Cycles of Covers
نویسنده
چکیده
We initially consider an example of Flynn and Redmond, which gives an infinite family of curves to which Chabauty’s Theorem is not applicable, and which even resist solution by one application of a certain bielliptic covering technique. In this article, we shall consider a general context, of which this family is a special case, and in this general situation we shall prove that repeated application of bielliptic covers always results in a sequence of genus 2 curves which cycle after a finite number of repetitions. We shall also give an example which is resistant to repeated applications of the technique.
منابع مشابه
Understanding p-Cycles, Enhanced Rings, and Oriented Cycle Covers
This paper explains the important conceptual and technical differences between the method of p-cycles and two other recent advances involving a cyclic orientation to protection. These are enhanced rings and cycle double covers. The most fundamental difference that is unique to p-cycles is the aspect of straddling span failure protection. This enables mesh-like efficiency levels at well under 10...
متن کاملConnectedness of families of sphere covers of a given type
There are now many applications of the following basic problem: Do all covers of the sphere by a compact Riemann surface of a “given type” compose one connected family? Or failing that, do they fall into easily discernible components? The meaning of “given type” usually uses the idea of a Nielsen class — a concept for covers that generalizes the genus of a compact Riemann surface. The answer ha...
متن کاملApproximating Multi-criteria Max-TSP
The traveling salesman problem (TSP) is one of the most fundamental problems in combinatorial optimization. Given a graph, the goal is to find a Hamiltonian cycle of minimum or maximum weight. We consider finding Hamiltonian cycles of maximum weight (Max-TSP). An instance of Max-TSP is a complete graph G = (V,E) with edge weights w : E → N. The goal is to find a Hamiltonian cycle of maximum wei...
متن کاملSperner and Kkm-type Theorems on Trees and Cycles
In this paper we prove a new combinatorial theorem for labellings of trees, and show that it is equivalent to a KKM-type theorem for finite covers of trees and to discrete and continuous fixed point theorems on finite trees. This is in analogy with the equivalence of the classical Sperner’s lemma, KKM lemma, and the Brouwer fixed point theorem on simplices. Furthermore, we use these ideas to de...
متن کاملIdeals and graphs, Gröbner bases and decision procedures in graphs
The well known correspondence between even cycles of an undirected graph and polynomials in a binomial ideal associated to a graph is extended to odd cycles and polynomials in another binomial ideal. Other binomial ideals associated to an undirected graph are also introduced. The results about them with topics on monomial ideals are used in order to show decision procedures for bipartite graphs...
متن کاملInteger flows and cycle covers
Results related to integer flows and cycle covers are presented. A cycle cover of a graph G is a collection %Y of cycles of G which covers all edges of G; U is called a cycle m-cover of G if each edge of G is covered exactly m times by the members of V. By using Seymour’s nowhere-zero 6-flow theorem, we prove that every bridgeless graph has a cycle 6-cover associated to covering of the edges by...
متن کامل